Photosynthesis is the process whereby our plants use light to create sugars to use for energy and in cannabis plants, MARIJUANA production. To serve this process, growers need to supply their plants with a powerful light source that can provide a proper spectrum: this will ensure maximum sugar production during photosynthesis.
P.A.R.
PAR is a term usually synonymous with golf. But when you look at it in a different light, it can also mean photosynthetically active radiation – and that is a term usually associated with serious cannabis cultivation. In essence, the PAR value is a rating for the amount of usable light that a bulb can emit.
L.E.D.
The light-emitting diode, or LED, was invented in Russia in the mid-1920’s. You might be thinking: Who cares where it was invented? But the important fact here is when it was invented – nearly 85 years ago.
The point is that it has taken a very long time for this technology to come into use, and these days the most limiting factor with LED grow lights ’s is still the cost of developing the technology. Manufacturers are just now hitting the market with LED products that are actually precise enough and strong enough to light indoor gardens on their own. In the next five to 10 years – assuming these new LED lamps work well – you can expect to see a huge increase in market volume for LED’s as the cost of this technology begins to go down. With that said, let’s take a look at the basic advantages of LED lights, moving gradually into the more technical aspects.
To start with, LED lamps  use somewhere around one-fifth the power of normal high-intensity discharge (HID) lighting. One of our recent test products – the UFO LED, manufactured by HID Hut (and depicted on our February 2008 cover) – uses 90 watts while still putting out just as many lumens as a 400-watt MH bulb. Obviously, this amounts to a pretty big savings in power consumption and electricity costs.
So what about the spectrum? Well, here’s where the technology side begins to come into play. It’s worth mentioning that each of these little LED’s can cost the manufacturer upwards of $10 each. When you have 90 LED’s in one lamp, things start to get extremely pricey. The key to keeping this cost down is for the manufacturer to choose LED bulbs that will be more cost-efficient for the consumer. The trick, however, is to not compromise on the best spectral wavelength for your plants. As it stands now, the best LED products in stores (and online) can cost between $550 and $650.
The UFO led grow lights , for example, utilizes two spectral wavelengths; one red and one blue. When the lamp was going though its prototype testing, trials found that with the red diodes at 455 nm and blues at 627 nm, some minor stretching occurred during the flowering stage. To combat this, the company tweaked the lamp, stepping up the number of blue diodes from 10 to 20 out of 90. While the company’s founder acknowledges that he would have preferred to use 660s instead of 627s, the cost of doing so would have made the product five times more expensive, and that just doesn’t work for home or hobbyist growers. It has been these types of adjustments (with more to come) that have helped LED’s become viable options for indoor growrooms.
Looking toward the future, it may soon be possible for best LED grow lights lamps to hit every possible color in the spectrum that a plant could want, and to supply it in the exact amounts that cannabis plants need. But right now, LED’s like the UFO have produced yields similar to or better than their HID counterparts in initial trials (see results in final section), and have simultaneously saved growers money on electricity while adding better security and growroom atmosphere than do standard HPS and MH bulbs.
没有评论:
发表评论